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Abstract 
 

Tropical cyclone (TC) activity is analyzed in 8 Climate Model Intercomparison Project 
phase 5 (CMIP5) models. The global TC activity in the historical runs is compared with 
observations. Although all the models underestimate the global frequency of TCs, there is 
a wide range of in global TC frequency across the models. The models with the highest 
horizontal resolution have the highest level of global TC activity though resolution is not 
the only factor that determines TC activity. The models showed no consensus regarding 
the difference of TC activity in two warming scenarios (RCP4.5 and RCP8.5)  and the 
historical simulation. We examined in detail North Atlantic and eastern North Pacific TC 
activity in a subset of models and found no robust changes across models in TC 
frequency. In two models, a westward moving track-type occurring in the eastern North 
Pacific and associated with El Niño had a higher frequency in the future scenarios. The 
future changes in various large-scale environmental fields associated with TC activity 
were also examined globally: genesis potential index, potential intensity, vertical wind 
shear and sea level pressure. The multi-model mean changes of these variables in the 
CMIP5 models are consistent with the changes obtained in the CMIP3 models. 
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1.    Introduction  
There is a huge interest in the potential change of tropical cyclone behavior with global 
warming due to the large impacts of tropical cyclones on coastal communities around the 
world. Three approaches to inferring tropical cyclone (TC) activity from climate models 
are: (i) to examine the statistics of TC-like storms generated by models, (ii) to analyze the 
large-scale variables associated with TC activity, or (iii) to perform statistical or 
dynamical downscaling. Each of these approaches has positive and negative aspects. In 
this paper, we will apply the first two approaches to data from  the Climate Model 
Intercomparison Project phase 5 (CMIP5) dataset (Taylor et al. 2012). 

The main objectives of this paper are to assess the ability of the CMIP5 climate 
models to simulation TC activity and to determine whether the models show robust 
global and regional TC activity responses in to warming. Our regional focus is on the 
basins affecting the North American climate, namely the North Atlantic and the eastern 
North Pacific.  

Low-resolution climate models can generate TC-like structures (e.g. Manabe et al. 
1970; Bengtsson et al. 1982; Vitart et al. 1997; Camargo et al. 2005). These model TCs 
have some characteristics similar to observed TCs, including temporal and spatial 
climatological distributions, but are much weaker and larger than observed storms due to 
the low-resolution.  Even when the TC model mean frequency is not correctly simulated, 
these models capture interannual variability associated with El Niño – Southern 
Oscillation (ENSO), and have been used successfully to develop dynamical (Vitart and 
Stockdale 2001; Camargo and Barnston 2009) and statistical-dynamical  (Wang et al. 
2009) seasonal forecasts of TC activity. More recently, multi-year hurricane forecasts 
have been developed using these models (Smith et al. 2010; Vecchi et al. 2012). 

In the last few years, many centers have started to use high-resolution global 
climate models with more realistic TC characteristics to simulate TC activity (e.g. 
Bengtsson et al. 2007a,b; Gualdi et al. 2008; Zhao et al. 2009) across a range of time-
scales: including intra-seasonal (Vitart 2009; Vitart et al. 2010, Jiang et al. 2012), 
seasonal (Zhao, et al. 2009; Chen and Li, 2009), and longer time-scales, with 
considerable success (e.g. Oouchi et al. 2006; Chauvin et al. 2006, Sugi et al. 2009). In 
most cases, these simulations are forced with prescribed sea surface temperature (SST); 
only in a few cases are fully coupled models used (e.g. Gualdi et al. 2008). Even these 
high-resolution global models are  not able to simulate the most intense storms, and 
downscaling methods (statistical, dynamical and statistical-dynamical) have been 
employed to obtain more precise information about projected TC characteristics, 
especially intensity (Knutson et al. 2008; Bender et al. 2010; Lavender and Walsh 2011, 
Zhao and Held 2010, Villarini and Vecchi, 2012a,b). 

As low-resolution climate models are better able to simulate the large-scale 
environmental than individual storms, one attractive approach is to analyze large-scale 
variables known to be associated with TC activity, instead of model TCs directly. Gray 
(1979) first developed a genesis index based on 4 parameters associated with TC 
occurrence. Emanuel and Nolan (2004) improved the Gray index, and further refinements 
have been suggested by various authors (e.g. Emanuel 2010; Tippett et al. 2011). The 
simplicity of these indices is their main attraction, and they have been applied to analyze 
TC activity on various time-scales, including intraseasonal (Camargo et al. 2009), 
seasonal (Camargo et al 2007b), future climate change (Veechi and Soden 2007b), and 
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past climates (Korty et al. 2012a,b). Following the same principle used in the CMIP3 
models, analysis of projected changes of TC activity were performed using large-scale 
environmental variables known to be associated with TC activity, such as potential 
intensity, vertical wind shear and humidity (Vechi and Soden a,b, here called VS07a and 
VS07b).  

Given the scope of the CMIP5 experiment design, most modeling centers 
contributed output from fairly lower resolution models. Therefore, it is important to 
consider the large-scale environmental changes, in addition to model storms. We expect 
that the CMIP5 simulation of TC activity will not be as good as in high-resolution 
simulations, but we want to know how far are the CMIP5-class models are from the high-
resolution ones. We are particularly interested in whether the CMIP5 models project 
robust changes in the global TC activity similar to those seen in the high-resolution 
projections.   

Until now, projected changes in TC activity are robust only on a global scale, with 
an expected small reduction in global TC frequency and a small increase in TC intensity 
by the end of the 21st century (Knutson et al. 2010). We want to know if the CMIP5 
models reproduce these projected changes in global frequency and intensity. We will also 
explore regional robust changes in TC activity across CMIP5 models focusing on the 
North Atlantic and eastern North Pacific.  

A few of the results presented here also appear in the US National Oceanic and 
Atmospheric Administration (NOAA) Modeling Analysis and Prediction Program 
(MAPP) synthesis papers on North American climate in the CMIP5 models (Sheffield et 
al. 2012 and Maloney et al. 2012). 

In section 2, we describe the models, data and methods used in this paper. Section 
3 discusses the global TC activity in the CMIP5 models, with a detailed analysis of TCs 
in the eastern North Pacific and North Atlantic region presented in Section 4. The 
changes in large-scale environment from the end of the 20th century to the end of the 21st 
century are presented in Section 5. A discussion of the results of our analysis is given in 
Section 6. 

2.    Models, data and methods 

a. CMIP5 models 
The choice of models used in this analysis was based in their data availability in the 
CMIP5 data portals (Taylor et al. 2012). Tracking TC-like storms in the models using the 
Camargo and Zebiak (2002) algorithm requires 6-hourly environmental variables 
(namely: vorticity at 850hPa, temperature and winds in various pressure levels, and 
surface pressure), and this requirement was the main restriction in our model choices, 
since only a few models provided this output frequency at the time of our analysis. 

Furthermore, the data had to be accessible for specific scenarios (more details in 
Taylor et al. 2012). Our analysis includes a historical simulation, and two future warming 
scenarios. The historical simulation is forced with observed atmospheric composition 
changes (natural and anthropogenic), as well as time evolving land cover. The historical 
simulations are available from the mid of the 19th century to the near present, but we 
restricted our analysis to the period 1950-2005. For the future scenarios, we chose two 
projection simulations forced with specified atmospheric concentrations, also called 
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“representative concentration pathways” (RCPs). The first one is a mid-range mitigation 
emissions scenario (RCP4.5), the second a high emissions scenario (RCP8.5). To include 
a model in our analysis, we required 6-hourly data for the historical run as well as either 
the RCP4.5 or RCP8.5 future scenarios. In Table 1 we list the models used in this study.  

For the calculations based on monthly data (e.g. potential intensity, genesis 
potential index), we used all available ensemble members available, even if they were 
different than that used in tracking the cyclones. Unfortunately, one of the models had no 
monthly data available for our analysis. A list of the models and number of ensemble 
members used for 6-hourly and monthly data calculations are given in Table 2.  

b. Data 
The observed TCs data used in this paper are based on best-track datasets from the 
National Hurricane Center (North Atlantic and eastern North Pacific) and the Joint 
Typhoon Warning Center (western North Pacific, North Indian Ocean and southern 
hemisphere), and available online (Jarvinen et al. 1984; Neumann et al. 1999; Chu et al. 
2002). NCEP/NOAA Reanalysis dataset was used in the calculation of the present 
climate genesis potential index (Kalnay et al. 1996; Kistler et al. 2001).  

c. Methods 
The Camargo-Zebiak detection and tracking algorithm was used to identify and track TC-
like storms in the CMIP5 model output (Camargo and Zebiak, 2002). This algorithm has 
been used extensively in global (e.g. Camargo et al. 2005; Walsh et al. 2010; Kim et al. 
2011) and regional climate models (Landman et al. 2005; Camargo et al. 2007c) and 
operationally in the IRI TC seasonal dynamical forecast (Camargo and Barnston 2009). 
This algorithm was slightly modified to use 850hPa wind speed instead of surface wind 
speed and 3 instead of 4 temperature levels (850hPa, 500hPa and 300hPa), due to their 
unavailability in the CMIP5 6-hourly data. The algorithm detects and tracks structures 
with local maximum vorticity (850hPa) and wind speed, minimum surface pressure, and 
a warm core (based on temperature and wind fields). To be defined as a model storm, the 
values of the vorticity, wind speed and local temperature anomaly have to be above 
model and basin-dependent thresholds and last at least 2 days. These thresholds are based 
on the statistics of  historical runs. The same thresholds are used the future climate 
projection simulations. Once the storm passes these criteria, the track is extended in time 
backwards and forwards using a relaxed vorticity threshold. 

The Genesis Potential Index (GPI) used here was developed in Emanuel and 
Nolan (2004) and was discussed in detail in Camargo et al. 2007b. The GPI has been 
extensively applied and analyzed (e.g. Camargo et al. 2007a; Nolan et al. 2007; VS07a; 
Camargo et al. 2009; Tippett et al. 2011; Menkes et al. 2012). The GPI is a measure of 
potential formation of TCs based on 4 environmental variables, namely, low-level 
vorticity, vertical wind shear, mid-level relative humidity and potential intensity. To 
facilitate comparison among the models, the GPI was calculated on a 2 deg x 2 deg grid 
for all models, with all model fields being first interpolated to this grid before the GPI 
was calculated. 

The potential intensity (PI) is a theoretical limit for TC intensity (Emanuel, 1988). 
The procedure for the calculating PI calculation was first developed in Emanuel (1995) 
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and later modified to take into account dissipative heating (Bister and Emanuel 1998; 
2002a,b). PI depends on sea surface temperature (SST), sea level pressure, and profiles of 
temperature and humidity. PI has been extensively used as a proxy of TC intensity in 
analysis of low-resolution climate models (e.g. VS07b; Camargo et al. 2012), as the local 
PI has a high correlation with actual TC intensities in various time scales (Emanuel 2000; 
Wing et al. 2007). Similarly to the case of the GPI, the PI was calculated on a 2 deg x 2 
deg uniform grid for all models.  

The cluster analysis used in our analysis was developed in Gaffney (2004) and is 
described in detail in Gaffney et al. (2007). The cluster technique constructs a mixture of 
quadratic regression models, which are used to fit the geographical shape of TC tracks. 
Finite mixture models are able to fit highly non-Gaussian probability density functions 
using few component probability distribution functions. The model is fit to the data by 
maximizing the likelihood of the parameters conditioned on the data. One important 
advantage of this method is that it easily accommodates tracks of different lengths. Each 
TC track is assigned to one of the clusters. The number of clusters to be used is not 
uniquely determined, the optimal choice depends on the log-likehood values (interpreted 
as goodness of fit), and within-cluster spread (distance of all tracks in the cluster to the 
mean regression track). As the number of clusters (K) increase, the log-likelihood values 
increase and the within-cluster spread decreases, but both curves show diminishing 
improvement in fit for K higher than a certain value, which leads to an optimal range of 
K choices. The final selection within this range is usually based on the knowledge of the 
system. This technique has been applied to observed TC tracks in various regions 
including the western North Pacific (Camargo et al. 2007d,e), the eastern North Pacific 
(Camargo et al. 2008), the Fiji islands (Chand and Walsh, 2009, 2010), the North Atlantic 
(Kossin et al. 2010), and more recently to the southern hemisphere (Ramsay et al. 2012).  

3.    Historical Global TC activity 
Models tracks and first position locations in the 8 models for the period 1980-2005 are 
shown in Figs. 1 and 2, respectively. Only one ensemble member is shown for models 
with more than one ensemble member. The models present a wide range of levels of 
global TCs. Some models (CanESM2, FGOALS and NorESM1) have very few TC tracks 
overall with a tendency for TCs in high latitudes in the North Pacific and North Atlantic. 
These three models are relatively active in the South Pacific subtropics. In the deep 
tropics, CanESM2 and FGOALS are most active in the south Indian Ocean.  

The other 5 models (GFDL, HadGEM2, MIROC5, MPI and MRI) present a much 
higher level of TC activity, but with significant differences among the models; all models 
have biases compared  with observations. The GFDL model is active in the Pacific and 
Indian Oceans, with relatively fewer storms in the North Atlantic. Another interesting 
characteristic of the GFDL model is that TCs occur very close to the Equator in the 
Central and Western Pacific and Indian Ocean.  

Similar to the GFDL model, there are very few North Atlantic storms in the 
HadGEM2 model, with most TC activity occurring in the southern hemisphere, western 
North Pacific and Bay of Bengal. The other 3 models (MIROC5, MPI, and MRI) are the 
most active models globally. However, much of the TC activity occurs in the subtropical 
region and in latitudes closer to the poles than in observations. One possible explanation 
for this behavior is that the tracking scheme is not distinguishing well between tropical 
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and extra-tropical storms, despite one of the criteria being that the storm have a warm 
core. However, this high level activity out of the tropics is not present in all models (e.g. 
HadGEM2 and GFDL), therefore this issue needs to be examined further in more detail.  

The distribution of the global number of TCs per year in the period 1980-2005 in 
the models and in observations is given in Fig. 3. Typical of low-resolution climate 
models (Camargo et al. 2005; 2007a) all models have too few storms per year. There is a 
clear relationship between model horizontal resolution and TC activity level, with the 
models with highest horizontal resolution (MRI, see Table 1), being the most active and 
closest to observed values. However, resolution does not completely explain TC activity 
level. For instance, the GFDL model has a lower resolution than the MPI model (Table 
1), but their global TC activity levels are quite similar. 

A comparison with the TC activity in the CMIP3 models (Meehl et al. 2007) is 
discouraging, with little improvement in the CMIP5 model simulations of TC activity 
(Walsh et al. 2010; 2012). TC activity also was seen to be better in CMIP3 models with 
higher horizontal resolution. Simulated TC frequency increases with increasing resolution 
if all other factors are kept constant (Bengtsson et al., 1995; Murakami and Sugi, 2010). 
However, model resolution is not the only factor responsible the quality of the TC 
simulations. TC frequency and spatial distribution in climate models are sensitive to 
changes in model convection schemes (Vitart et al. 2001; Kim et al. 2011, Reed and 
Jablonowski, 2011a; Zhao et al. 2012). Walsh et al. (2012) pointed to dramatic changes in 
model TC frequency in two versions of the CMIP3 GFDL model with different 
dynamical cores and the same convection parameterizations.  An extensive analysis of 
idealized simulations using different dynamical cores for the same model showed that the 
quality of the TC simulation was dependent on the interaction of the different model 
dynamical cores and moist convection parameterizations (Reed and Jablonowski, 2012). 
In summary, increasing model horizontal resolution is not sufficient to improve its 
simulation of TC frequency, as the model TC activity is sensitive to physical 
parameterizations and dynamical cores. 

A few models (MIROC5, MPI, MRI) are very active in the South Atlantic basin, a 
region that in observations very few storms occur. Hurricane Catarina in 2004 was a very 
unusual event (Pezza and Simmonds, 2005; McTaggart-Cowan et al., 2006). The 
occurrence of South Atlantic hurricanes in climate models is not unusual (e.g. Gualdi et 
al. 2008), but the level of activity in the MPI and MRI models in that region is quite high. 

The climatological mean GPI is shown in Fig. 4 for the 8 models and NCEP 
reanalysis for the period 1950 - 2005. As noted in previous studies (Camargo et al. 2007a, 
Tippett et al. 2011; Walsh et al. 2010, 2012), the GPI values in the models are much 
higher than in the reanalysis. These studies attributed the difference to the lower values of 
relative humidity in mid-levels in the reanalysis compared to the climate models, as there 
are known differences between the relative humidity in the ERA and NCEP reanalysis 
(Daoud et al. 2009) and biases in the mid-troposphere relative humidity in the NCEP 
reanalysis (Bony et al. 1997).  We calculated the difference between the models and 
NCEP reanalysis for the annual zonal mean climatological relative humidity at 600hPa 
between 40S and 40S for the period 1950 – 2005, and all models, with exception of 
CanESM2, have larger values than the reanalysis. Note that CanESM2 is the model with 
the smallest values of GPI. 
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 One aspect of interest is the relationship between GPI and the TC occurrence in 
models. Low-resolution climate models tend to have more realistic patterns of GPI than 
of TC occurrence and there is no good relationship between GPI and TC occurrence in 
the models (Camargo et al. 2007a; Walsh et al. 2012).  The same is true here, while 
CanESM2 and NorESM have almost no TC occurrence in the tropics, and very different 
from observations, their GPI pattern is quite similar to the reanalysis. The MRI model, 
the model with the highest resolution, shows the most agreement between GPI and TC 
frequency, which is, in agreement with Walsh et al. 2012. Even in the South Atlantic this 
relationship holds, with the MRI GPI in that region being quite high, and the model 
producing many TCs.  

The next issue we want to examine is the model projections of global TC 
frequency. Here we exclude from our analysis the 3 models (CanESM2, FGOALS, 
NorESM) with close to zero mean number of TCs (NTCs) globally (see Fig. 3). The 
distributions of global NTC per year in the historical runs and the 2 projection scenarios 
(RCP4.5 and RCP8.5) are shown in Fig. 5. There is little consistency among the models. 
While there is slight increase in NTC in the future for the GFDL and MPI models, there 
is a large increase in the MRI model, and a small decrease for the HadGEM2 and 
MIROC5 models. Knutson et al. (2010) analyzed the projections of global TC frequency 
in many high-resolution climate models, and the robust response among them was a small 
(but significant) decrease in the global frequency of TCs at the end of the 21st century. 
The lack of consistency among the models can be partly explained by the low-resolution 
and bias in NTC in the models analyzed here.  

In the case of the MRI model, the model with highest resolution in this set of 
CMIP5 models, the horizontal resolution is still lower than those models discussed in 
Knutson et al. (2010). It is interesting that here the MRI model (Mizuta et al. 2012) 
projects an increase the frequency of TCs in the future, while previous results with the 
various versions of this atmospheric model projected a decrease in the global frequency 
of TCs when forced with fixed SSTs (Sugi et al. 2009; Sugi et al. 2012; Murakami et al. 
2012a,b). The reasons for the differences in these results could have multiple sources: the 
lower resolution in the CMIP5 simulations, coupled ocean instead of fixed SSTs, 
coupling with chemical and carbon models, differences in the algorithm used for 
detection and tracking TCs (including thresholds definitions, e.g. Walsh et al 2007). 
Similarly, the MPI projections for an increase in global NTC though not as dramatic as in 
the case of MRI, are still in contrast with results with previous projections using a high-
resolution version of the model (Bengtsson et al. 2007b). 

4.    TC activity in the North Atlantic and eastern North 
Pacific. 

a. TC activity in the present climate 
We would like to explore now in more detail the TC characteristics of these simulations 
in the North Atlantic (NATL) and the eastern North Pacific (ENP). Previous studies have 
shown that most low-resolution models have difficulty in simulating the mean NTC in 
those regions, even when they are able to simulate well the interannual variability 
(Bengtsson et al. 1995; Vitart et al. 1997; Camargo et al. 2005,2007b; Walsh et al. 2010),.  
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Projections of NATL TC activity have been the focus of many studies using high-
resolution global climate models (Zhao et al. 2009), regional climate models (Knutson et 
al. 2008, Bender et al. 2010), statistical-dynamical downscaling (Emanuel et al., 2008). 
We would like to examine if the CMIP5 model regional projection of the TC activity 
Atlantic is robust and if it is in agreement with these studies. Recently, Villarini and 
Vecchi (2012b) used a statistical downscaling methodology to examine the 21st century 
projections of Atlantic storms using the CMIP5 models. They obtained an increase in the 
number of TCs in the 1st half of the 21st century, but obtained ambiguous results when the 
whole 21st century was considered. In the case of the ENP, there is no robust signal 
among models for that region (e.g., Emanuel et al. 2008). 

Another aspect of TC activity we would like to investigate is the possibility of 
track changes in these 2 regions. Given that the TC landfall location is determined by its 
track, if there are significant changes in track types these could lead to significant 
changes in landfall frequency and location. Murakami and Wang (2010) examined 
possible changes in NATL storms using high-resolution simulations of the MRI model 
and found significant track changes with a decrease of TC occurrence in the western part 
of the basin and increase in the eastern part of the basin. They attributed these track 
changes to changes in genesis locations, not to changes in circulation. We will examine 
the Atlantic tracks in the low-resolution version of the CMIP5 MRI model and compare 
with their results. 

The tracks of TCs in the ENP and NATL for the CMIP5 models and observations 
are given in Fig. 6. Similar to the results for global activity (Figs. 1 and 2), there is an 
enormous range in the level of TC activity among the models. Four models, CanESM2, 
FGOALS-g2, HadGEM2, and NorESM1, have very few storms in the two basins.. In the 
case of HadGEM2, this lack of TC activity is a regional rather than global feature, in 
contrast to the other 3 models which have a very low global NTC,. The HadGEM2 is 
much more active in the other regions (western North Pacific, North Indian Ocean and 
southern hemisphere) than in the ENP and NATL. Given the low level of activity of these 
4 models in these 2 basins, we will focus our attention in the other 4 models. 

The average NTC per month in the NATL and ENP in models and observations is 
shown in Fig. 7. In both basins all 4 models have too few TCs per year. Examination of 
the annual cycle reveals that the models produce to few TCs during the active season and, 
in contrast, too many TCs during the inactive season, when there are none or very few 
TCs in observations. This leads again to the question of whether some of the storms that 
the algorithm are detecting are extra-tropical or cold core storms, and this issue should be 
examined in more detail. 
 Given the large differences among these 4 models in NTCs (Fig. 7) and tracks  
(Fig. 6) in the Atlantic and ENP, it is useful to examine the internal variability of TC 
activity in the models that have more than ensemble member available. In particular, we 
would like to know if the TC activity in different ensemble members of the same model 
is more similar than among different models. Fig. 8 shows the tracks for 2 ensemble 
members of the MPI model, and the NTC distribution per year and the mean NTC per 
month for 3 MPI ensemble members in the historical runs. Fig. 9 shows similar plots for 
5 MIROC5 ensemble members. By comparing Figs. 8 and 9, it is clear that though there 
is variability in number and track patterns among the ensemble members of the same 
model, these are much more similar among each other than to other models (compare 
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with Figs. 6 and 7). This result is in agreement with the assessment of ensemble member 
uncertainty in TC activity done by Reed and Jablonowski (2011b) , which concluded that 
the dominant differences were due to different model versions and resolutions, and not 
due to sensitivity to internal variability.  

b. TC activity in future climates 
We now compare the present TC activity with RCP4.5 and RCP8.5 projections of TC 
activity in the Atlantic and ENP. In Fig. 10 we show the distribution of TCs per year in 
the GFDL, MIROC5, MPI and MRI models in the present and future. In the NATL, there 
is a statistically significant reduction in the TC frequency in the MIROC and MPI 
models, while for the GFDL model the NTC distributions are very similar in the present 
and future. There is a significant NTC increase in the MRI models for the RCP8.5 
scenario. In summary, there is no robust signal across models in changes of Atlantic NTC 
by the end of the 21st century. This is result is not completely unexpected given the 
differences in the NTC climatology in the Atlantic in the models analyzed here. 
Furthermore, using a statistical downscaling technique, no robust changes in Atlantic 
NTC was obtained (Villarini and Vecchi, 2012b). 

In the ENP, the MRI model also has a significant increase in the RCP8.5 scenario, 
with the MPI having a small increase in the TC frequency in both future scenarios. The 
MIROC5 model has a significant decrease in NTC in both scenarios. As in the Atlantic, 
there is almost no robust change in the ENP NTC across the models. 
 

c. Tracks in present and future climates 
The climatological track distributions (frequency of TC tracks per grid point) for in the 
present climate for the 4 models in the Atlantic and ENP are shown in the left panels of 
Fig. 11. For the models with more than one ensemble member available, all ensembles 
were used in the construction of the track density (MPI, MIROC5). The GFDL model 
Atlantic tracks are restricted to a narrow region starting Africa and going northwestward 
in direction of North America. The MIROC5 Atlantic tracks are in the subtropics, with 
only a few tracks of storms that form in the deep tropics. The most realistic Atlantic 
tracks in this group of models occur in the MPI model, which include both tropical and 
subtropical storms. Similarly to the MIROC5 model, the tracks in the MRI model mainly 
occur in subtropical latitudes, with only a few cases in the deep tropics.  

The tracks in the ENP (Figs. 6 and 11) are more similar among the models than in 
the case of the Atlantic, but there are clear differences as well. The tracks in the GFDL 
model are restricted to a smaller region, while the MRI model have tracks occurring 
nearer the Equator and more subtropical latitudes. The MPI and MIROC tracks tend to be 
mainly parallel to the coast. The difference of the track density in future and historical 
scenarios is shown in the central (RCP4.5) and right panels (RCP8.5) of Fig. 11. The 
largest differences occur in the MIROC5 model. However, these negative changes near 
the coast can be directly attributed to fewer storms in that model in the future. The 3 other 
models have noisier differences in the track density that we would like to examine in 
more detail using cluster analysis.  
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We will restrict our cluster analysis to the MPI and MRI models, as these models 
have more ensemble members available. Furthermore the tracks patterns of these models 
are not completely unrealistic, as we will show below. With cluster analysis, we can 
separate the TC tracks in groups with similar track types. As we have already applied the 
same cluster analysis for observed tracks in the Atlantic and ENP, we can compare the 
model track types with the observed ones as well as between models. We can also 
compare the cluster assignments in present and in future scenarios and identify track 
shifts in the future climates.  

The cluster analysis was applied separately for the Atlantic and ENP storms. We 
used all the tracks in all scenarios and ensembles members to construct our cluster 
analysis. We re-ran the cluster analysis 100 times re-ordering the storms randomly to 
obtain the statistical significance of the cluster assignments (see the details in Camargo et 
al. 2007a, 2008, Kossin et al. 2010). Fig. 12 shows the result of the cluster analysis for 
the MPI (left panels) and MRI (right panels) Atlantic tracks. When this cluster analysis 
was applied to observed Atlantic tracks, the optimal number of cluster choice was K=4 
(Kossin et al. 2010). Here we use the same choice for the number of clusters for the 
models. The 4 clusters in observations include a cluster of subtropical storms, one of Gulf 
of Mexico storms, and two types of deep tropics storms, one with formation more to the 
east of the basin and the other near the Caribbean islands (see Fig. 1 in Kossin et al. 
2010).  

The MPI model has 3 clusters in the Atlantic that are similar to the observed ones: 
a subtropical cluster, a Gulf of Mexico cluster and a tropical cluster. The remaining 
cluster, with subtropical storms located in the eastern part of the basin (Fig. 12(c)) has no 
observed counterpart. In the case of the MRI model, there are 2 cluster types in the 
Atlantic that are somewhat similar to observed ones, a subtropical cluster (Fig. 12(b)) and 
a Gulf of Mexico cluster (Fig. 12(h)), though this last cluster also includes the few storms 
forming in the MDR in that model. The main difference in the MRI model tracks and the 
observations is the existence of two additional subtropical clusters, with no 
correspondence in the observations, one in the central Atlantic (Fig. 12(d)), and one in 
the eastern Atlantic (Fig. 12(f)), which is similar to the MPI subtropical eastern cluster 
(Fig. 12(c)).  

In table 3, we show the percentage of storms in each cluster for both models in the 
historical and the 2 future scenarios. In cases with statistically significant differences 
(using a t-test), the percentages are marked in bold. For the MPI model, there is a 
statistically significant increase in the percentage of storms in the 2 subtropical clusters 
(K=1 and K=2), and a statistically significant decrease in the percentage of storms in the 
tropical cluster (K=4). In the case of the MRI model, the shifts in the future are between 
storms in clusters (K=1) and (K=3), i.e., subtropical storms in the western and eastern 
part of the basin, with a decrease in the percentage of subtropical storms in the western 
region and an increase in the subtropical tracks in the eastern part of the basin (which do 
not exist in observed tracks).  

The Atlantic tracks in the high-resolution version of the MRI model used in 
Murakami and Wang (2010) are much more similar to the observed Atlantic tracks. There 
are no central and western Atlantic subtropical tracks, as are seen here. Similar the zonal 
(east to west) shift noted here, Murakami and Wang (2010) also obtained a zonal shift, 
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with a decrease of tracks in the Gulf of Mexico and Caribbean and an increase in the 
MDR and western subtropical storms.   

In the case of the ENP observed tracks, the cluster analysis led to an optimal 
choice of 3 clusters (see Fig. 5 of Camargo et al. 2008): two clusters that form very near 
the coast, one with tracks parallel and close to the coast, and the other forming slightly 
northward and moving more northwestward, and a third cluster that forms further from 
the coast and have a more westward track type. In Fig. 13, we show the result of applying 
the cluster analysis to the ENP tracks for both MPI and MRI model. The similarity of the 
ENP tracks types in the models with the observations and between the two models is 
better than in the Atlantic. Both models have one cluster that forms near the coast and 
moves almost parallel to the coast (Fig. 13(a) and (b)) and another that forms further from 
the coast and has a westward moving track (Fig. 13(c) and (d)). The clusters least similar 
to the observed ones are the third type (Fig. 13(e) and (f)), but even in this case the tracks 
do not seem as unrealistic as some of the model Atlantic clusters.  

The percentage of tracks in each cluster in both models and all scenarios is given 
in Table 4. In this case, both models project an increase in the percentage of westward 
moving storms (K=2, Fig. 13(c) and (d), but differ as to which cluster will decrease. 
While the decrease for the MPI model occurs in the most populated cluster, with tracks 
parallel to the coast (K=1, Fig. 13(a)), for the MRI the decrease occurs in the other near 
coast cluster (K=3, Fig. 13(f)). The consistency of the increase in the westward moving 
track between the two models is intriguing. In observations, this type of track is 
associated with occurrence of El Niño events. It would be interesting to examine if there 
is an increase in frequency in El Niño events in these two models that could explain this 
track shift in the ENP. 

5.    Changes in the large-scale environment 
We will examine now changes in the large-scale environment in the two future scenarios, 
compared with the historical simulations in all models. In Fig. 14 we show the difference 
in the climatological GPI in the future and present for 7 models and their model mean. 
The climatological GPI in the historical simulation for the same models was shown in 
Fig. 4. The model mean GPI difference is positive in most regions, with exception of the 
central south Pacific. An increase in the GPI in the future can be interpreted as an 
increase in the global TC frequency in these models in a future climate.  However, in 
some cases model GPI  is observed to increase even when the model NTCs decreases 
(Camargo et al. 2012b), therefore we need caution in interpreting this result. The model 
with the largest increase of GPI is the MIROC5 model, which has a decrease in the 
number of TCs globally in this scenario (Fig. 5) as well. In some models, the GPI 
difference patterns appear to be shifts in location, such as in the southern hemisphere and 
western North Pacific for the NorESM1 model. These shifts resemble GPI ENSO 
difference patterns (El Niño minus La Niña) discussed in Camargo et al. (2007b). 
Another interesting feature is the decrease of GPI in the MRI model in the south Atlantic, 
where there is an unrealistically high number of TCs in the historical run (Fig. 1(g)).  

Vecchi and Soden (2007a) calculated the model mean difference of GPI in future 
and present climates for the CMIP3 models in the June – November period (Fig. 4(d) in 
VS07a)). In that case, there was also an increase in most of the northern hemisphere GPI 
in the ensemble mean with a maximum in the western North Pacific, with exception of 
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the ENP, where the GPI decreased. Here the model mean difference is positive in the 
whole northern hemisphere. It is interesting to note that there are only small increases in 
the GPI in the Atlantic MDR region and near Florida in both cases. 

Another quantity of interest is the potential intensity (PI), which is the theoretical 
maximum of TCs. Fig. 15 shows the difference of the potential intensity in the RCP8.5 
and historical scenarios for the individual models and model mean. The PI increases in 
most of the northern hemisphere in all models, with exception of a small region of the 
eastern part of the NATL and Pacific Oceans. In some models, the decrease in in PI in the 
NATL is restricted to a small region near Africa (MRI model), while in other models a 
larger region in the NATL has negative PI differences, including the Gulf of Mexico 
(MPI and CanESM2) and MDR region (CanESM2). In the southern hemisphere, there is 
an increase in PI in most regions. In all models there is a strong decrease in PI in 
southeast Pacific and Atlantic, regions where normally TCs do not occur. Vecchi and 
Soden (2007)a,b analysis of the PI of the CMIP3 models for the June – November season 
has a very similar pattern in the northern hemisphere to that shown here: an increase in PI 
in most of the northern hemisphere with one maximum near Hawaii and the other 
centered in the Equator near the data line, and a decrease in the PI in the NATL, which 
was attributed to changes in the remote SST (VS07b). The NATL negative region in the 
CMIP5 model mean PI differences is smaller and more restricted to the eastern Atlantic, 
than in the case of CMIP3.  We repeated the calculation of the multi-model mean using 
22 CMIP5 models, instead of only the 8 included in this study and the pattern obtained 
looks very similar to that in panel (h). 

We also analyzed changes in the magnitude of the vertical wind shear in future 
and present climates (Fig. 15). All models have large regions of increased (decreased) 
vertical shear in the subtropical (tropical) latitudes of the southern hemisphere, which 
could lead to an equatorial shift of the TC activity in the southern hemisphere. In the 
northern hemisphere, most models show an increase in the vertical shear in the ENP and 
Caribbean region, extending in some cases into the Gulf of Mexico. In contrast, the 
eastern part of the Atlantic, western North Pacific and North Indian Ocean have a 
reduction of the vertical wind shear. Once more, the model mean pattern is extremely 
similar to that obtained in the CMIP3 models in VS07a for the northern hemisphere TC 
season. These changes in vertical shear are associated to the projected decrease in the 
Pacific Walker circulation (VS07a), while the near equatorial vertical shear weakening 
was related to the near-equatorial zonal overturning (VS07a,c; Vecchi et al., 2006) due to 
global thermodynamic constraints (Held and Soden, 2006) 
 The difference of sea level pressure (SLP) in the RCP8.5 and historical runs is 
shown in Fig. 17.  The movement of TCs (i.e. their tracks) is largely determined by the 
ambient flow, or steering winds, with modifications due to the beta effect (Chan 2005). 
The steering winds are strongly related to the position and strength of the subtropical 
highs. Therefore, any future changes in the subtropical highs will be associated with 
shifts in TC tracks (Colbert and Soden 2012). The differences in SLP in the NATL shown 
in Fig. 17 are associated with a westward expansion of the subtropical high, which could 
potentially lead to more landfalls in the southeast region of the United States. Li et al. 
(2012) has noticed this extension of the NATL subtropical high in the CMIP5 models for 
the RCP4.5 scenario, and it was also present in the CMIP3 models (Li et al. 2011). In the 
western North Pacific, the increase in the SLP in the RCP8.5 projections could indicate a 



14 

southwestward shift of the subtropical high. Similarly, the increase of SLP in the 
southern hemisphere could be related to an Equatorial shift of the subtropical high in the 
south Pacific and south Indian Ocean.  

6.    Summary 
An assessment of the TC activity in 8 CMIP5 models was presented. Although the 

typical model resolution increased since the previous CMIP3 assessment, model global 
TC frequency is still much lower than observed. Even in the model with the highest 
resolution, global TC occurrence is only half of the observed value. Furthermore, there 
are still deficiencies in the geographical patterns of the TC tracks and formation, with a 
large number of subtropical and South Atlantic storms in many models. There is no 
robust signal across the models in changes in global TC frequency for future scenarios. 
An analysis of the regional TC activity in the ENP and NATL did not detect any robust 
changes in TC frequency in those two regions either. We used cluster analysis to look for 
possible changes in tracks in these two regions, with consistent results obtained only in 
the ENP, with westward moving storms occurring more often than in the historical case 
in the 2 models. 

Given the current state of the art of the CMIP5 models for TC activity, it is 
fundamental to continue to use a variety of downscaling methods (statistical and 
dynamical) to better infer future projections of TC frequency, intensity and tracks (e.g. 
Knutson et al. 2008; Villarini and Vecchi 2012a,b). High-resolution models forced with 
fixed SST from the CMIP5 models (e.g. Zhao et al. 2009) and statistical-dynamical 
downscaling results (e.g. Emanuel et al. 2008) should still give a better assessment of 
future track and frequency projections than using only low-resolution models. 

The large-scale environmental variables projection changes associated with TC 
activity in the CMIP5 models are very consistent with the CMIP3 results. More detailed 
analysis of these changes is necessary, for instance the seasonality of PI, which had 
changes in the CMIP3 models (Sobel and Camargo, 2011). As basin wide PI trends can 
be larger than actual local PI trends (Kossin and Camargo, 2009), caution must be taken 
not to overestimate future trends when using basin wide large-scale variables.  
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TABLE 1. CMIP5 models used to track TC-like structures using 6-hourly data: official 
name, shortened name used in this paper in parentheses, modeling center, approximate 
horizontal resolution (in degrees) (Taylor et al. 2012). 
Model Name Modeling Center Resolution Reference or link: 
CanESM2 Canadian Centre for Climate 

Modeling and Analysis 
2.8 x 2.9 www.ec.gc.ca 

FGOALS-g2 
(FGOALS) 

LASG, Institute of Atmospheric 
Physics, Chinese Academy of 
Sciences and CESS, Tsinghua 
University 

2.8 x 3.0  Bao et al. (2012) 

GFDL-ESM2M 
(GFDL) 

NOAA Geophysical Fluid 
Dynamics Laboratory 

2.5 x 2.0  Donner et al. (2011) 

HadGEM2-ES 
(HadGEM2) 

Met Office Hadley Center 1.9 x 1.2 Jones et al. (2011) 

MIROC5 
(MIROC) 

Japan Agency for Marine-Earth 
Science and Technology, 
Atmosphere and Ocean Research 
Inst. (U. of Tokyo) and National 
Inst. for Environmental Studies 

1.4 x 1.4 Watanabe et al. (2010) 

MPI-ESM-LR 
(MPI) 

Max-Planck Institute for 
Meteorology 

1.9 x 1.9 Zanchettin et al. 
(2012) 

MRI-CGCM3 
(MRI) 

Meteorological Research 
Institute 

1.1 x 1.2  Yukimoto et al. (2011) 

NorESM1-M 
(NorESM1) 

Norwegian Climate Centre 2.5 x1.9 Zhang et al. (2012) 
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TABLE 2. CMIP5 models and number of ensemble members used to calculate six-hourly 
and monthly mean environmental variables 
 
 Storms tracking – 6 hourly data Environmental Fields – 

Monthly data 
Model Name Historical  RCP4.5 RCP8.5 Historical RCP8.5 
CanESM2 1 1 1 5 5 
FGOALS-g2 2 0 1 0 0 
GFDL-ESM2M 1 1 1 1 1 
HadGEM2-ES 1 1 1 4 4 
MIROC5 1 3 2 4 3 
MPI-ESM-LR 3 3 3 3 3 
MRI-CGCM3 5 1 1 4 1 
NorESM1-M 1 1 1 3 1 
 
 
 
 
TABLE 3. The percentage of storms per cluster in the North Atlantic for the MRI and MPI 
models are given below. The percentages were calculating by giving each storm a cluster 
assignment, and repeating the procedure 100 times, randomizing the order in which the 
storms were entered in the cluster analysis. Percentages marked in bold show statistically 
significant differences for that cluster between the percentages in the historical and the 
correspondent scenario (RCP4.5 and RCP8.5) using a t-test 
 
Model  Scenario K=1 K=2 K=3 K=4 
MPI  Historical 0.33 0.27 0.17 0.22 
 RCP4.5 0.35 0.31 0.20 0.13 
 RCP8.5 0.37 0.30 0.18 0.13 
MRI Historical 0.32  0.32 0.23 0.13 
 RCP4.5 0.33 0.31  0.25 0.10 
 RCP8.5 0.29 0.30 0.27 0.14 
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TABLE 4. The percentage of storms per cluster in the eastern North Pacific for the MRI 
and MPI models are shown below. The percentages were calculating by giving each 
storm a cluster assignment, and repeating the procedure 100 times, randomizing the order 
in which the storms were entered in the cluster analysis. All ensemble members available 
were included in the cluster analysis. Percentages marked in bold show statistically 
significant differences for that cluster between the percentages in the historical and the 
correspondent scenario (RCP4.5 and RCP8.5) using a t-test. 
 
Model  Scenario K=1 K=2 K=3 
MPI  Historical 0.59 0.18 0.23 
 RCP4.5 0.54 0.28 0.18 
 RCP8.5 0.50 0.34 0.15 
MRI Historical 0.36 0.31 0.33 
 RCP4.5 0.40 0.32 0.29 
 RCP8.5 0.34 0.37 0.29 
 
 
 



24 

 
 
FIG. 1. TC tracks in 8 CMIP5 models (historical runs) and in observations for the period 
1980-2005. Only one ensemble member is shown for each model.  
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FIG. 2. TC first position in the tracks of 8 CMIP5 models (historical runs) and 
observations for the period 1980-2005 (shown in Fig. 1). Only one ensemble member is 
shown for each model. 
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FIG. 3: Distribution of the global number of TCs per year in each of the models for the 
historical runs and in observations in the period 1980-2005: CanESM2 (CESM), 
HadGEM2 (HGEM), NorESM1 (NESM). When more than one ensemble member is 
available, all ensemble members are used in the distribution (FGOALS, MPI, MRI). The 
box denotes the range of the 25th to 75th percentiles of the distributions, with the median 
marked by the line inside the box and the values outside of the middle quartile being 
marked by whiskers and crosses. 
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FIG. 4: Seasonal climatological Genesis Potential Index (GPI) in the models and the 
NCEP reanalysis for the period 1950-2005. In all panels, the northern (southern) 
hemisphere shows the GPI seasonal mean for August to October, or ASO (January to 
March, or JFM) season.  
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FIG. 5: Global number of TCs (NTC) per year in models for the historical (H) in the 
period 1951-2000 and in the future scenarios RCP4.5  (45) and RCP8.5 (85) in the period 
2051-2100. The box denotes the range of the 25th to 75th percentiles of the distributions, 
with the median marked by the line inside the box and the values outside of the middle 
quartile being marked by whiskers and crosses. 
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FIG. 6:  North Atlantic and eastern North Pacific TC tracks in 8 CMIP5 models (historical 
runs) and in observations for the period 1980-2005. Only one ensemble member is shown 
for each model. 
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FIG. 7:  Distribution of the number of TCs (NTC) in North Atlantic and eastern North 
Pacific in the period 1950-2005 for models and observation per year (top panels) and 
mean NTC per month (bottom panels). The box denotes the range of the 25th to 75th 
percentiles of the distributions, with the median marked by the line inside the box and the 
values outside of the middle quartile being marked by whiskers and crosses. 
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FIG. 8:  Tracks of the MPI model TCs for ensemble members (ENS) 1 (a) and 2 (b). 
Mean MPI NTC per month in North Atlantic (c) and eastern North Pacific (d) for 3 
ensemble members (E1, E2, and E3) in the period 1950-2005. Distributions of MPI NTC 
per year for 3 ensemble members in the North Atlantic (e) and eastern North Pacific (f) in 
the period 1950-2005. The box denotes the range of the 25th to 75th percentiles of the 
distributions, with the median marked by the line inside the box and the values outside of 
the middle quartile being marked by whiskers and crosses. 
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FIG. 9:  Tracks of the MRI model TCs for ensemble members (ENS) 1 (a) and 2 (b). 
Mean MRI NTC per month in North Atlantic (c) and eastern North Pacific (d) for 3 
ensemble members (E1, E2, E3, E4, and E5) in the period 1950-2005. Distributions of 
MRI NTC per year for 5 ensemble members in the North Atlantic (e) and eastern North 
Pacific (f) in the period 1950-2005. The box denotes the range of the 25th to 75th 
percentiles of the distributions, with the median marked by the line inside the box and the 
values outside of the middle quartile being marked by whiskers and crosses. 
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FIG. 10: NTC per year in the models in North Atlantic (top panel) and eastern North 
Pacific (bottom panel) for the historical (Hist; 1951-2000) and RCP4.5 (R45) and RCP8.5 
(R85) future scenarios (2051-2100). The box denotes the range of the 25th to 75th 
percentiles of the distributions, with the median marked by the line inside the box and the 
values outside of the middle quartile being marked by whiskers and crosses. 
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FIG. 11:  Model climatological track density (mean counts of tracks passing per grid 
point) in historical runs (left panels). Difference of the model climatological track density 
for the future scenarios and historical run: RCP4.5 (middle panels) and RCP8.5 (right 
panels). In the cases that more than one ensemble member is available, all ensembles 
were used to calculate the climatological track density. 
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FIG. 12:  North Atlantic TCs tracks by cluster (K) for the MPI (left panels) and MRI 
(right panels) models. Tracks for one ensemble member of the historical, RCP4.5 and 
RCP8.5 runs are shown together for each cluster and model.  
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FIG. 13:  Eastern North Pacific TCs tracks by cluster for the MPI (left panels) and MRI 
(right panels) models. Tracks for one ensemble member of the historical, RCP4.5 and 
RCP8.5 runs are shown together for each cluster and model.  
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FIG. 14:  Difference of model genesis potential index (GPI) climatology between the 
RCP8.5 future scenario (2071-2100) and historical (1971-2000) run. The multi-model 
mean difference is shown in the right bottom panel. In all panels, the difference in ASO 
(JFM) is shown in the northern (southern) hemisphere. All ensemble members available 
are used to calculate the GPI climatology per model and scenario. 
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FIG. 15:  Difference of model potential intensity (PI) climatology between the RCP8.5 
future scenario (2071-2100) and historical (1971-2000) run. The multi-model mean 
difference is shown in the right bottom panel. In all panels, the difference in ASO (JFM) 
is shown in the northern (southern) hemisphere. All ensemble members available are 
used to calculate the PI climatology per model and scenario. 
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FIG. 16: Difference of climatological model vertical wind shear between the RCP8.5 
future scenario (2071-2100) and historical (1971-2000) run. The multi-model mean 
difference is shown in the right bottom panel. In all panels, the difference in ASO (JFM) 
is shown in the northern (southern) hemisphere. All ensemble members available are 
used to calculate the magnitude of the vertical wind shear climatology per model and 
scenario. The vertical winds shear magnitude is calculated as the magnitude of the 
difference between the 200hPa and 850hPa winds. 
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FIG. 17:  Difference of climatological sea level pressure between the RCP8.5 future 
scenario (2071-2100) and historical (1971-2000) run. The multi-model mean difference is 
shown in the right bottom panel. In all panels, the difference in ASO (JFM) is shown in 
the northern (southern) hemisphere. All ensemble members available are used to 
calculate the sea level pressure climatology per model and scenario.  
 
 


